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SECTION I
APERTURE REPRESENTATION BY A PAIR OF DIPOLES

R e

A convenient approximation of the electromagnetic field in the
presence of a small aperture is in terms of a pair of dipoles, as
originated by Bethe [1]. Assume that the local distribution of the
total electric field ft(x,z) over an aperture in x-z plane, such
as in Fig.l1.(a), has been determined by an analytical or a numerical
solution of the boundary-value problem. Then, the electromagnetic
field in the "internal" region y>0 remains unchanged if the aperture
is closed by a metal 1id on top of which there is a magnetic surface

current

:fs“‘(x,z) B Et(x,z) x Zy 6))

where Zy is the unit vector in y direction.

The coupling to the TEM wave on the system of conductors can
be then computed by replacing the aperture with a c;onducting 1id on
top of which there are two dipoles, Ee and Em as shown in Fig. 1.(b).

* Electric dipole moment C, is oriented in y direction:

Cey =ffj:x(x,z)dxdz, (2)

and the magnetic dipole moment of interest here is oriented in x direction:

Cox = jme[fzf:’((x,z)dxdz. (3)




Fig. 1(c) Magnetic and electric surface currents which are equivalent to the
pair of dipoles.




The magnetic dipole moment may also have the z-component, but
the present report is devoted solely to a coupling of quasi-TEM waves
guided along z direction by a system of conductors as indicated in
Fig. 1.(b). Therefore, the z component of the magnetic dipole is
of no importance, because it does not interact with these quasi-TEM
waves.

In this report, the electric dipole moment Ee (in Ampere-meters)
has a meaning of the moment of an electric current element, similarly
as in references [2]-[4]. This current moment should not be confused
with the electric charge moment E (in Coulomb.- meters) such as used
for example in references [5]-[7]. The relationship between these

two maments, for exp(jwt) variation, ié as follows:
¢, = jup . 4)
Similarly, the magnetic dipole moment Em (in Voltemeters) in
this report denotes the moment of the magnetic current element, in
the sense as used by references [8]-[10]. The magnetic charge moment

it (in Ampere-square-meters), such as used for instance in references

[5]-[7] is related to 3m as follows:

- k-
Cm = Jwum, (5)

Figure 1.(b) is a first-order equivalent of the original
configuration from Fig.l.(a). Sometimes, it is convenient to further
change Fig. 1.(b) into an equivalent configuration in Fig. 1.(c) in
which there is a distribution of the surface magnetic current j"s‘ and
of the surface electric current 3: over the x-y plane. Figurés 1.(b)
and 1.(c) are equivalent if the surface currents become delta functions

as follows: 5
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J.° = E8xxs(y) ,

:fsm = 3m6(x-x0)6(y) 3 (7)

For an aperture of general shape, integrations (2) and (3) are
to be performed numerically, For several characteristic shapes (circle,
ellipse, narrow slit; square, etc,), the dipole moments have been com-
puted or determined experimentally, It is customary to express the
moments in terms of the excitation fields ﬁs' ﬁs and in terms of the
polarizabilities a er %p® Consider the aperture in Fig, 2 which is to
be replaced by the dipole moments so that the field in the "internal
region y > 0 is maintained, The excitation fields (so-called short
circuit fields) produced by the sources located in the internal region
will be denoted Esint and ﬁsint. When the excitatioﬁ comes from the
side y <0, the short circuit fields will be denoted by fseXt and -ﬁsext.
For the purpose of coupling to the quasi-TEM waves in the internal region,
only the components Eys and Hxs are of interest. Instead of per-

forming the numerical integrations from (2) and (3), the dipole moments

of small apertures of characteristic shapes may be computed as follows:

Cux = ~Jwmay (ersbxt g Hxint) ’ (8)

ext int) 4 ©)

c_ = jweae (Eys ys

ey

The electric polarizability LR and the magnetic polarizability %y of a

circular aperture of diameter d are:

8
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Ge 1'2 d ’ dm B'd (10)
For a square aperture of side ¢, Cohn [11], [12] has measured the
following polarizabilities:

5 3 A 3
@ = 0.1;372 » Op 0.2590¢" .,

The last two references also contain the measured polarizabilities for

rectangular and other shapes of apertures.
In Fig. 5, a plane wave is shown incident from the y <0 region,
The two possible polarizations of the plane wave are denoted TE and

TM. The corresponding dipole moments are computed from (8) and (9) by

substituting the following excitation fields:

2E
™: E y:"t = 2Eysin o, Hx:"t i ""rTQ sin a , (11)
TE: E ext _ 0 H ext _ ZE0 6 (12)
: g ; s = ~7 COs © cos a.

For this excitation, take Ey;nt =0 and H*;nt = 0.

When electromagnetic fields in the presence of a ground plane
are considered, sometimes it is convenient to remove the plane and
replace it by appropriate images. In the present report the ground

plane has not been removed and the images have not been invoked.
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TM wave:

TE wave:

Fig. 3. Orientation of coordinates.
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When dipole moments C and C ey have been determined, it
is possible to compute the amplitudes of the outgoing guided waves
created by these dipole moments. In Fig. 3, the scattering ampli-
tudes of the TEM guided waves traveling in the positive and
negative z direction are denoted by ag and bs' Using the appro-
priate boundary conditions in the xy plane, the following scattering
amplitudes a and bs are obtained [13]:

1
e | (- &0 9 - cey_e),rm(xo,O)] 4 AR

1

‘ bs =3 [cm}&,[.EM(xO,O) - Ceyey’I'Hw(XO’o)]' (14)

The scattering amplitudes are complex numbers, normalized in such
a way that |a5|2/2 and |bslz/2 are powers of the outgoing waves
traveling in positive and in negative z directions [14].

It should be noted that Collin [14] uses superscripts (+) or
(-) to denote the direction of the wave propagation. In the present
report, letter a denotes the complex amplitude of the wave traveling
in the positive z direction, and letter b is used for propagation

in negative z direction. These are the familiar scattering param-

eters [15].




SECTION II
TRAVELING WAVE FORMULATION

Lossless multiconductor transmission lines (MIL) with unequal
conductors and inhomogeneous dielectrics give rise to multivelocity
quasi-TEM waves. As shown in the Appendix C, the voltages and currents

on a MIL are described by

N -;B.z iR.2Z

V@»> = § @je L rbe’ Do as)
n=1 :
N -jB.z jB.z

|I(z)> = § (a;e e b.e % )]wi> ; (16)
n=1

|¢i> and Iwi> are normalized voltage and current eigenvectors, and

ai's and bi's are scattering amplitudes of the waves traveling in positive
and negative z direction, respectively. It is assumed that on an N
conductor MIL there are N normal modes, each of them having a.distinct
propagation constant Bi‘

The notation from (15) and (16) may be made more compact by introducing

the vectors of incident and reflected normmal-mode amplitudes

8 ‘ o
la> = | : : [b>= | : §%))

and by introducing the diagonal matrix E(z) containing the exponential
functions
B8,z Bz
E(z) = diag. (e, }...-., e N ) (18)

13
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In the new notation, (15) and (16) become:

[V(z)> = M, (E*(2) [a> + E(2)[b>) (19)
[1(z)> = M;(E*(z) |a> - E(2)[b>) (20)

where * denotes a complex conjugate number, and _N!v and h_a_l are matrices

consisting of voltage and current eigenvectors, as defined by (C-42)and (C-43).

(19) and (20)may be now solved for |a> and |b>:

Er(z)|2> = J06|V(2)> + MylT(2)>) (21)
1.+ +
E(z)|b> = 2-(h_/lI|V(z)> < y&,lI(z)>) i < 2Ry

|a> is a constant vector containing the amplitudes of the individual

modes as its components. For instance,ai is the complex amplitude such that the

total power of the i-th mode transmitted in positive z direction is

A ° 2
P; = zla;l

The entire power of all the modes traveling in the positive z direction is

P' = Z<ala> (23)

where <a| denotes a transpose conjugate of |a>, Similarly, the entire
negative-traveling power is

P" = 3<blb>. (24)

The net power is the difference of the two, On a uniform MIL there is

no exchange of power between different modes. Each mode travels with

14
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constant magnitude, while its phase grows linearly with distance.

The z dependence of scattering amplitudes may be expressed as

la(z)> = E*(z) |a> - (25)
and
|b(z)>.= E(z) |b> (26)

where |a> and |b> are vectors consisting of complex constants, Thus,

the i-th component of the vector equation (25) is

'j Biz
ai(z) =e a;

and the corresponding i-th component of (26) is

B2
bi(z) =e bi

The signal flow graph [16]of the MTL section of length £ is shown in Fig. 4.
The i-th mode has two variables ai(O) and bi(O) at z=0. Similarly, at
z=¢ the two variables of the:: i-th mode are aitl) and bi(z). The coefficients
of matrix E*(2) equal to e.J Biz. Thus, ai(z) i:s obtained by multiplying
ai(O) by the A coefficient e-JBiz. The signal flow graph
in Fig. 4 is extremely simple, since along the transmission line there
is no cross coupling between different modes.

Figure 5 shows a MIL section with 3 conductors above the ground plane,
At z=0, a source is coupled to the MIL, inducing the waves traveling toward

+z and -z directions. The amplitudes of the i-th mode produced by the

source are a; . and bi s The direction of propagation of these

waves is indicated by a wavy arrow, The wave traveling in +z direction
-jB.2

arrives at 2=0, shifted in phase for e . 4. There, a three-port net-

work terminates the MTL. The impedance matrix of this network is Zy-
15
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Fig. 5. Terminated MIL with a source of outgoing waves located at z = 0.




The amount of reflection on the MTL can be computed from 54 as follows,
At z=0, the total amplitude a; of the i-th mode traveling in the
positive z direction consists of two parts: the source part a,q and
the part which arrives reflected from the left-hand termination at
z--zs. The total amplitudes of all waves at z=0 are arranged in vector

la>. Then, the vector of all waves arriving at z=f, is
la(z,)> = E*(8,) 2>

From (21), this is furthermore equal to

la()> = 3071V(2y)> + MylT(2,)%). @)

From (22), the reflected mode vector at the end of line is

Ibz,) = 30 1V(2y)>- MyIT1(0)>). (28)

The currents and voltages at the load network terminals are related
through _2_4

IV(eg)> = 2,11(2)> . (29)

By eliminating |V(24)> and |I(2.4)> from the last three equations one
obtains
|b(£4)> - §4|a(24)> (30)

where the reflection matrix at port 4 is
s, = o z, M- )Mz, M+ U)E (31)
= -1 241 -1 =41 =

17
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When the load impedance matrix is equal to the characteristic
impedance Z.{- 50’ one has a reflectionless termination, as can be verified
by (C-46) and (C-50). Otherwise, §4 is a matrix which has usually non-
vanishing off-diagonal elements. This means that a single incoming mode
a; produces a multitude of reflected modes bj (j=1,2,3, etc.). Thus,
energy transfers from any one mode into all other modes.

This fact is illustrated in the signal-flow diagram on Fig. 6. On
top of the figure, a,  represents the amount of energy coupled from an
external source to mode 1, traveling in +z direction. The total wave
amplitude a, at the origin, consists of ajg plus the wave which was
reflected from the termination at 2=-L4:

-8

a, =a; + al(-zs)e .

1

This wave arrives at port 4 as
"3y 2y
a1(9,4) =ae

A portion of this wave goes back as a reflected wave of the mode 1:

S4,11%1 (%)

where S is the coefficient (1,1) of the matrix S,.

4,11 -4
Another portion of the wave a, (2.4) goes to the enh ancement of the
reflected mode 2:

S

4,212

4)

and so on, as shown in Fig. 6. For example, the total reflected wave
of the mode 2 is
by(24) = Sy 2131 (Rg) * Sy 228,(2y) * Sy 2335(Ly) .

Similar situation occurs at port 3, where the load network _Z_Lsis attached.
There, the reflected wave is

la(-13)> = §_3|b(-!.3)> . (32)

18




Fig. 6. Signal flow graph of the MIL from Fig. 5.
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(33)

The above discussion was based entirely on the frequency-domain
considerations, where each mode was a steady-state sinusoidal function
of time. Assuming the quasi-TEM waves are non-dispersive, an arbitrary
waveform is transmitted by each mode without a distortion, Therefore,
for mode i, the wave ai4(t) traveling in the +z direction at the port
4 is just a delayed waveform which started at the origin as aio(t):

a;,(t) = a,.(t - i..:-) (34)
Since the waves are now functions of both time and position, the second
subscript is used to specify the position: 0 for origin , 4 for z=4, etc,

The time-table of the outgoing and reflected waves on a 3 conductor
line is presented in Fig. 7, At z=0, the three waves start to travel to

the right:
alo(t) ’ azo(t) ’ aSO(t)

and similarly the three waves start to travel to the left
byo(t) 5 byt , byy(t) .

Each wave travels with its mode velocity Vi At t=t,, the first wave

arrives at port 4: %
4
t = e .

1 V1
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Fig. 7. Time-table representation of multiple reflections on the terminated MIL.
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Its shape is a shifted shape of the wave which started from the origin,

B o A AR R S

according to (34). This wave produces three reflected waves, which then

AT
e

travel with their corresponding velocities back in the negative z direction.
When the load network contains inductances and capacitances, the shape
: of the reflected waves will be different from the incoming waveshape.
For simplicity, consider the case when the load network is purely re- %
sistive. In that case, the reflected waves will be of the same shape
as the incoming waves. The amount of reflection is specified by (30)
and (31), where _Z_L4is a purely resistive network, thus _S_4 has also
purely real elements. The reflections from the left-hand termination

arehandled in an analogous manner, §

Ty
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As demonstrated above the scattering repre-
sentation in terms of vectors |a(z)> and |b(z)> is very convenient
for the treatment of propagation and reflection of waves on a MTL.
Nevertheless, often it is necessary to compute explicitly the voltages
and currents on individual conductors, They are specified by vectors
|[V(z)> and |I(z)>. The transformation from scattering variables to

the currents and voltages is obtained from (19), (20), (25), and (26)

as follows

[V(2)> = M;(|a(2)> + |b(2)>) , (3%)

11(2)> = M(la(z)> - [b(2)>) . (36)

The inverse transformation is obtained from (21), (22), (25), and

(26):

7 MIVE)> + M| 1(2)>) (37)

la(z)>

|b(z)>

% M} [V(2)> - M|1(2)) . (38)

Note that the components of scattering vectors |a(z)> and |b(z)>
correspond to the individual normal modes, while the components of the
voltage and current vectors |V(z)> and |I(z)> correspond to the indi-
vidual conductors. As an example, a; is the complex amplitude of the
i-th mode. On the other hand, Vi is the voltage of the i-th conductor

w.T. to ground.
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Fig. 8.(a) shows a section of MIL of the length &, The voltages

Vi(z) are specified between each conductor and the ground, where
the conductor side is considered as positive. The currents Ii(Z) on
the individual conductors are specified positive when flowing in
(+z) direction. This apparently trivial fact is pointed out because
by using this convention, the current at z=2 points out of the MIL
section, which is not'customary in the network theory. However, the
present convention is found to be hore natural for the matrix
manipulations which follow. The consequence of this convention is
that the total power

il
P = >Re<V|D>

is not always pointed into the network, as customary in network theory,
but here P represents the power flow in the positive z direction.
Thus, at z=0, P is into the MIL, at z=%, P is out of the MIL.

The use of |a> and [b> variables in place of {V> and [I>
variables is indicated in Fig. 8.(b). At each end of the MTL there
is a transforming network NT’ which transforms the variables according
to (35)-(38). At z=0, the left-hand terminals of Ny are the actual
MTL conductors. Here, the variables are |V(0)> and |I(0)> . The
other side of NT network has the mode variables |a(0)> and |b(0)>.
Each mode is represented by a fictitious single transmission line,
shielded from all the other lines. Each single transmission line

passes the wave through by simply adding the phase shift (-eiz) as

follows -jB.%
ai(z) = ai(O)e x

At the other end of the MTL, at z=%, variables |a(2)> and |b(R)> are
transformed back to variables [V(2)> and [I(2)> in another identical

transforming network NT'

24
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Fig, 8(b). Equivalent circuit for normal modes.
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SECTION III ~
EQUIVALENT SOURCES FOR APERTURE EXCITATION |

Each normal mode is described by its scattering amplitude a;

(waves traveling in +z direction) or bi (waves traveling in -z

direction). The detailed distribution of the electric and magnetic

field, for the i-th mode traveling in +z direction, is

-jB.z _
B (x,y,2) =aje” ' &xy) , (39)
1y
~jB.z i
B (x,y,2) =ae” ' RGxy) - (40) |
i

Ei and ﬁi are the normalized modal field distributions over the cross

sectaon of the MTL. The total power transmitted by the i-th mode

e

traveling in +z direction is obtained by integrating the Poynting
vector over the cross section:

P! =1ge [E;(x ) x . (x,y)]+ d3

" 2 i L '

cross section

IR SRR AR R SRl

For normalized modal field distributions

RSt

*
/f [Ei(x,y) s KJ (xvY)]'dg 21 Gij ’ (41)
cross section
and the power transmitted by the i-th mode is
R 2 :
P; = 7lal
in accordance with circuit theory.
Fig.9.(a) shows the junction representing an aperture on a MTL.

The aperture is excited by an external field from below the ground plane,
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Fig. 9(a). A junction with an aperture. Fig. 9(b). Normal-mode sources.
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Fig. 9(c). Voltage and current sources.
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This excitation is replaced by an equivalent pair of dipoles T and

cey‘ In what follows, an equivalent circuit will be established for

the junction between the two infinitely close planes, denoted by

L and R (letters stand for "left" and "right"). |
According to (13), the dipole pair i and ¢ ey excites the i-th

mode traveling in +z direction as follows

= 1 - {
e 1 {me}&i(XO’o) 'ceyeyi(xo’o)] B (42)

As indicated prew)iously, a convention in the present report is that
the waves traveling in +z direction are denoted by a;, while the waves
traveling in -z direction are denoted by bi.. Therefore, (42) gives a
source of the traveling mode in +z direction, and is denoted by a si'
A traveling wave source is @ three-terminal device, as explained in

Appendix B.

Another word about the notation in (42): hxi(xo,O) is the x-component
of the magnetic-field modal distribution of the i-th mode, evaluated
at the point x=X, and y=0, Similarly eyi(xo,O) is the y-component of
the normalized electric modal field.

For the traveling-wave source of the i-th mode propagating in

-z direction, the following is obtained from (9):
1
bsi k. [~cmxhxi(x0,0) - Ceyeyi(XO’o)] ' (43)

Fig. 9.(b) shows the modal sources between the left and right

reference planes. This equivalent circuit is appropriate for an analysis

in terms of scattering coefficients, The equivalent circuit in temms

ki
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of voltages and currents can be now obtained by a simple matrix
manipulation. First, define the vectors containing the scattering

sources as follows:

asl bsl
=t ; [bg> = | : . (44)
asN bsN

The traveling wave vector, |a.R> traveling in +z direction out of the . '?
right-hand reference plane is a sum of the source vector las> and

the wave vector [aL> incoming from the left upon the left-hand reference

plane:

|aR>= iaL>+ |as> ¢ (45)

Similarly, the waves traveling in the -z direction are related as
ideis L e RS (46)

The voltage and current variables of the source junction are
shown in Fig. 9.(c). The voltages and currents at the left-hand
plane are defined by IVL> and IIL> , Wwhile the right-hand variables
are |VR> and |IR>. The current sources from Fig, 9,(c). constitute
vector iIs> while the voltage sources make |V e The Kirchhoff laws

require

V> + V> = IVp> (47
and

IIL> + IIS> = IIR> ¢ (48)

To change from scattering representation to voltage representation,

use (35)

|.vs> = |Vp>-1Vp> = My(lag>-la;> + [bp>-]b;>) .
29




By virtue of (45) and (46):
Vo> = My(lag>~[by>) . (50)

The components of |as> and |bs> are given by (28) and (29). The

difference tem is

8g; ~ Bgy = Telli (X0 (51)

and it depends only on the magnetic dipole excitation, Thus, the

voltage sources in Fig. 9(c) are to be computed as follows:

Cmcig g 0)
Ve =Myl ccvenvnnnn : (D)

meth(xo ,0) .
The current sources are similarly found as follows
|I> = M; (lag>+ |bs>) ; (53)
The sum term depends entirely on the electric dipole moment

= bsi 2 ceYeyi(XO’o) . s

so that the formula for computation of the current sources becomes
Cey ey1 (xo,O)
|Is>'M-I e ey . (55)

cey eYN(xo,O)

In the above derivation, the energy storage at the junction was not

taken in the account. The circuits from Fig., 9.(b) and (c) are thus the

zeroth-order equivalents, such as the zeroth-order equivalent of a single

transmission line from reference [13].
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SECTION IV
EXAMPLES OF VOLTAGE WAVEFORMS

The voltages induced on a 2-conductor transmission line
filled with inhomogeneous dielectric will be now computed in order
to illustrate the use of the theory developed thus far. The system
is shown in Fig. 10. A small circular aperture of diameter d = 2 cm
is located at z = 0. The two-conductor transmission line is located
between z=-2; = -Tmand z = %, = 5 m.

The cross section of the transmission line is shown in Fig. 11:
it consists of two strip conductors of width w, placed between the
three layers of dielectrics denoted el, €25 and €3 The dielectric
thicknesses are denoted by hl’ hz, and hS‘ This parallel-plate
model of the transmission line is selected because of its simplicity,
and it will be used to illustrate the procedure of computing
voltages induced by an EMP wave. The electrostatic field within the
transmission line from Fig. 11 may be produced in two independent
ways. In the excitation A, a potential Yy is applied to conductor
a, while conductor b and .the shield are held at zero potential. Then,

the fields in the three regions are

N

V
= a a = = . = - a2

In the excitation B, a potential Yy is applied to conductor b, while

conductor a and the shield are held at zero potential. The corresponding

fields are
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= L+ = --’ b 4 = -
Bp=D i By- i g2 By

el

Under arbitrary excitation the fields in the individual regions
(i =1, 2, 3) are obtained by superposition:
CE eV B v By (56)
In order to compute the coefficients of electric induction
matrix, one must find the charge per unit length of the conductor a.
This is accomplished by integrating the electric flux through the

closed surface Sa around the conductor a:
Qa = / eE- ds
Sa

where ¢ and E depend on the point of integration. Using (56), the
charge Qa is found to consist of two parts, one proportional to V:‘1

and the other proportional to Vi

. agh /EEA'dg+vb /EEBdg
Sa

Sa

(57)

Qa 7 vaKaa x vbKab
The constants of proportionality are called induction coefficients,
denoted Kaa and Kab' They depend only on the geometry of the system.

For example, K__ is computed as follows:

aa
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. 1%] (58)
Similarly, the other iridnction coefficients are found as follows:

€
= = 3
Kb *Fa = ¥ ﬁ; (59)

€

Kb "‘”[}? s h_z}
3 Iy

These coefficients form induction coefficient matrix K

: [Kaa Kab] o
o i i

As an example of a symmetric system, the followiﬁg dimensions have been
selected:

h1=2cm,h2=2cm,h3=1cm,w=100n,e 1.0,.

ir -

€op = 1.0, €30 = 2.0, d =2 cm.

The corresponding matrix K is




25 -20
K=¢) |-20 25

The induction coefficient matrix with only ajir as dielectric will be

denoted K':

Cfe g
'=
K'=¢ .10 15

By using matrices K and K' one can find the modal velocities, voltage
and current eigenvectors, and the impedance matrix by the procedure
described in Appendix C. The inverse of the induction matrix L is
directly proportional to K' as follows

% (62)

where ¢ is the velocity of the light in vacuum. Next, the eigenvectors
and eigenvalues of L_'l are found, and an auxiliary matrix B is formed
according to (C-15). When the eigenvalues of B are computed, the modal
velocities v, are found as their inverse square roots, according to
(C-16). The eigenvectors of B are then used to form the modal matrices

and M,, according to (C-42) and (C-43):
-1

|

¢b1 -6.136 2.369

=

ral -0.081489 -0.21106

¥h1 -0.081489 0.21106
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Subscripts a and b denote the conductors, and subscripts 1 and 2

denote the modes.
Next, modal functions ey and }& will be evaluated. The aper-

ture is placed at the center of the bottom shield conductor, as shown

th

in Fig. 11. By definition, the electric field of the n~ mode trav-

eling in positive z direction is

i ol 3By
E (x,y,2) = 3¢ (x,y)e

By selecting A 1, the electric field at z = 0 becomes

E (x,y,0) = & (x,y) (66)

When . 1 and bn = 0, the voltage vector is obtained from (35)

as follows

¢
|%>=I%>=[“] (67)
I

%

Thus, in order to find the modal function En of the mode n (here,

f
|
g.

n = 1 or 2), the potentials on the two conductors must be selected
equal to ¢an and ¢b n 2 shown in Fig. 12. Then the modal function is
equal to the electric field, according to (66). Since the field has

only the y component, the result is

e _=¢ E + ¢, E =-fl’!l (68)
yn e y2A bn"y2B hs

The modal function 'ﬁn(x,y) is equal to the magnetic field ﬁn(x,y,O)

inside the transmission line, when conductor a carries a current Ia'wan
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and conductor b carries current Ib = wbn' The situation is shown
in Fig. 13. The currents are assumed to be uniformly distributed over
the conductor surfaces. An elementary computation gives the following
value for the magnetic field modal function:

Va1 * Ypn(hy * hs)

h_= (69)
xn w_(h1 +h2 + hs)

In the example treated here, a time domain response will be evalu-
ated, while most of the theory presented until now has been formulated
in the frequency domain. In order to use formulas (8) and (9) for a

general time variation, they are rewritten as follows:

I S xt _ Jdnt

‘me = Hm 3t [ His Hys ] (70)
. 2 | qext - Jint

Cey = % 3¢ [ s ] (71)

The polarizabilities a and a, are given by (10).

The incident wave orientation is specified by angles o and 6 as
shown in Fig. 3. Then for a ™ polarization, the field components of
importance are

2E

ext _ . ext . 0 :
Bys = ZEOF(t)sme = Hxs - F(t)sina (72)

An arbitrary time variation of the incident plane wave is described by

function F(t). For EMP wave, a simple function is selected as follows

-a,t -B,t
P(t) =e L -¢ 1 (73)
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Fig. 12. Evaluation of the electric field on the line from Fig. 11.
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Fig. 13. Evaluation of the magnetic field on the line from Fig. 11.
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having the following derivative

'Glt -Blt
F'(t) = -a,e + Be ¢ (74)

The following parameters of the incident plane wave have been

selected for the present example:

E, = lookV/m, a = 30°, 6 = 45°, a, = 3.10%1 §5-1,

0 ,81=10

1

The electric and magnetic current moments are now computed by (70)

and (71):
M d3
= — —— \ 3
G 2 ne EOF (t) sina, (75)
d3
= el 1 1
Ce 2 ‘e: 13 EOF (t) siné (76)

These values are to be substituted in (42) and (43) in order to compute
the traveling wave sources for different modes on-the multiconductor
line. For the present example, the modal functions eyi and l&i which
are needed in (42) and (43) are determined by (68) and (69). The ini-
tial amplitudes of the traveling wave sources can be now computed and
the multipole reflection traced down in a manner indicated in Fig. 7.

As long as the loading at each end of the multiconductor line consists
of pure resistances, such as in Fig. 10, the wave shape remains unchanged

after each reflection, and is specified by the function F'(t) from (74).
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In the first example to be computed, the following loading

resistances have been selected:

R, = RaR = 1kQ, RbL - RbR = 1008, RcL =R, =1R

aL

The load impedance matrix of a T network is then obtained as

ZL11 - RaL + RCL = 1.001kQ

= R

2132

ZL22 " RbL + RCL = 1.001kQ

The corresponding scattering matrix is obtained from (33)

0.43488 0.17495
0.17495 0.90584

Since the load resistances on the right-hand side are the same as on

the left-hand side, §4 = §3. For each incident wave a; at the port 4,

the reflected waves are computed by

bj = Sjiai for j = 1,2

Then, the voltages are obtained from (35)
V> = M, (la> + [b>)
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The velocities of the two waves are e 3-108 m/s and
v, = 2.236 - 108 m/s. Fig. 14 shows the voltages on the right-
hand end of the transmission line. V1 is the voltage on the con-
ductor a , while V, is the voltage on the conductor b. First
pulse arrives at t; = 2,4/V1 = 16.6 ns. Note that this is even
mode, since the polarity of the pulse is the same on both conductors.
Shortly afterwards,. at t, = 9,4/v2 = 22.4 ns, the odd mode arrives
producing a positive pulse of VI and a negative pulse of V,. The
next arrival is the group of four waves which are reflected from
the left-hand end of the line, and the process is continued through
multiple reflections bouncing back and forth on the line.

At each of the bounces, some of the energy is lost in resis-
tances terminating the line, so the process gradually dies off as
seen in Figure 14. 1If one end of the line is terminated in a resis-
tance matrix equal to the characteristic impedance matrix ZO’ there
are no reflections from that end. In the next example, we terminate
the right-hand end of the MIL by a matched impedance. The necessary
resistances are obtained from ZO as follows. First go is computed

by (CS0)

43.260 32.036

Zos
32.036 43.260

Then, the resistances of the T-network are obtained as

Rap = 2011 - Zop2 = 11-2240

RbR = 2022 g 2012 = 11.224Q
RCR = 2012 = 32.056Q

B R T TR e S PR




yTROE, )

V0o
-0.1

027

LTAGE V2
-p.OQ "'PlOl

Ay

80.00 160.00 240.00 320.00 400.00
TIME IN NRNOSECONOS

025

.00

Fig. 14.

80.00 180.00 240.00 920.00 400.00 :
TIME TN NRNOSECONOS

Voltage waveforms on a 2-conductor line: moderate mismatch.
42




With such a matched termination on the right-hand side, the resulting

voltages take the shape as shown in Fig. 15. The first arrival of
the odd and even mode is similar to the previous situation in Figure 14.
Also, the next four pulses are similar to those from Figure 14, but
after that there are no more waves left on the line.

Another extreme situation occurs when there is no attenuation ,
because the terminations consist of open-circuits or short circuits.

In Figure 16, the following terminations have been selected

RaL - RaR = 1kQ, RbL - RbR =-0.14 RCL =R,= 0.01Q

cR

There is little attenuation of the voltage waveshapes in the first
300 ns, and the multiple bouncing on the transmission line continues
for a long time.

The computer program evaluates the individual pulse arrivals in
the close analogy with the time-table from Figure 7. If the MIL can
support N different modes, each of those produces N other reflected
modes at each bounce. Very soon the storage requirements become
prohibitive. For a 2-conductor line of the total length 12 m as in
Figure 10, there are 510 pulse arrivals within 300 ns. If the number
of conductors is increased to three, there are 9840 arrivals which are
to be stored before sorting them in chronological order. It is obvious
that this procedure is practical only for computing the early time
responses.

An example of the three conductor parallel-plate MIL is shown
in Figure 17. The voltages on the individual conductors are denoted

by V;, V,, and V.
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Fig. 15. Voltage waveforms on a 2-conductor line: matched load at left-hand
terminals.
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All the examples computed in this Section utilize a parallel-
plate model of the MIL with inhomogeneous dielectric, because of
the availability of simple formulas for the evaluation of induction
coefficient matrix K and of the normalized modal functions ey(xO,O)
and hx(xo,O). However, the same procedure of computing the voltage
waveforms may be applied to any other set of data for 15, ey and hx
which may be obtained by a numerical solution of the arbitrary
shapes of conductors. Several numerical procedures for computation
of the induction coefficient matrix K have appeared in the recent
literature (see [16] to [18]). If these methods are supplemented by
computation of e y(xo,o) and hx(xo,O) at the aperture center, the rest
of the computations of voltage waveforms described in this Section

is applicable to arbitrary conductor shapes and sizes.

16. W. T. Weeks, '"Calculation of Coefficients of Capacitance of
Multiconductor Transmission Lines in the Presence of Dielectric
Interface," IEEE Transactions Microwave Theory Techn. Vol. MIT-18,
pp. 35-43, Jan. 1970.

17. J. C. Clements, C. R. Paul, A. T. Adams, "Computation of the
Capacitance Matrix for Systems of Dielectric-Coated Cylindrical
Conductors," IEEE Transactions on Electromag. Compat. Vol. EMC-17,
No. 4, pp. 238-248, Nov. 1975. Also see Correction in EMC-18
No. 2, pp. 88-89, May 1976.

18. C. R. Paul, "Computation of the Transmission Line Inductance
and Capacitance Matrices from the Generalized Capacitance
Matrix," IEEE Transactions Electromag. Compat., Vol. EMC-18.
No. 4, pp. 175-183, Nov. 1976.
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SECTION V
FIRST-ORDER EQUIVALENT CIRCUIT OF THE SMALL APERTURE

In Fig. 18 , a set of incident waves coming from the left is described

by laL>. The aperture region is located between two planes denoted L

and R. There is no incident wave coming from the right, |bR> = 0. The

waves |aL> excite the pair of dipoles Cey and e The excitation field

produced by the j-th incident mode is

int
Hxs i LJ xj (% ,0) (77)

gint _ 2 ; (78)
ysi = 13%; Ko 0)

This is an internal field, according to Fig. 2. From (8) and (9),
the dipole moments produced by the j-th mode are

cmxj‘ quumth (x O)aLj (79)

(- -jweo

e}’J eeyj (xoao) (2 (80)

Lj
Sumned. over all the incident modeS'

= juma Z

Cmx j=1 xj%Lj

N
Coy = ~Juea, ] e
ey e5a1 %YL

where argument (xo,O) has been ommitted for brevity.
These dipoles produce the outgoing waves - Their i-th component

is, according to (13) and (14):
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Fig. 18. Aperture junction with sources.
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Fig. 19. Signal flow graph of the aperture junction with sources.
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g = 3 Cys (R 00, 81 G 01 2y (83)
by = 3 mdhyg (%0r0) =Sy (X6, (84)

In what follows, argument (x,,0) will be ommitted for brevity. In (83)
the i-th mode outgoing wave at the @ ight-hand plane in Fig. 18 con-
sists of the (unattenuated) incider: wave ar; and the wave originated by

the dipole. Using (81) and (82) -

N N
= g :
ap; = ap;* Fl-juwwoph j-z-l hyjap;* Juena, j£1 eysar;l (85)
: N g N
by = liwwogh o jzl hxjaLj+ juwenag jzl eyjaLj] . (86)
This can be written as
lag>= U-jH+jBla> , (87)
bp>= (G H+]jBla> , (88)

where the real, symmetric matrices H and E are defined by

1 .
(Hj5 = zmophyesheg A
[E] e (90)
=ij 2 eyiyj

Thus, the scattering matrix of the aperture junction, in partitioned

form is
| bL>

| =
|3

4 lag > i
lap> T .
; 50
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The signal flow graph [16] is in Fig. 19. Also shown are
sources |aS> and lbs> from the zeroth-order equivalent circuit. Figure
19 is a complete first-order equivalent circuit for scattering represen-

tation. The corresponding immittance representation will be derived next.

Fig. 20 shows a small parallel perturba{tion on a MTL. The perturba-
tion is described by

|Vk> . (94)

and
Y V> . (95)

Kirchhoff current law requires

11> = 1> + |Tp> - "(96)

Change variables |V> and |I> into |a> and |b> according to (35) and
(36). Then, (94) and (96) become:

Mv(laL> + |bL>) = EV(|3R> + |bR>) 2

MpClag> -[b>) = X M (la> +[b>) + My (lag>-[bp>)

Multiply the first equation from the left by ﬂ(,l and the second equation

by M;'. Use (C-46) and (C-47) to obtain
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|aL> + lbL> = ]a_R> + |bR> :
|3L> - |bL> = Z[aL> + X,bL> - |aR> - le> Z

where the normalized admittance matrix is introduced as

y=uy

M.
A oy

By subtracting the above two equations one obtains

> = - (2u+y) Tyla> + 2020+ > (98)

When the normalized admittance matrix is ''small' [19] it is possible to

use the first two terms from Neumann's series:
-1 ~ 1 1
W+~ ~30-7y
Retaining only the linear terms in y, (98) is approximately given by
> =« dyjass @+ 19))bs (99)
L z L 13y TNty -

Next, consider-a small series perturbation in. Fig. 21, described by
1> = [1p> (100)
|V1> = _Z_]IL> 2 (101)

and
|VL> = |Vl> + IVR> " (102)

Expressed by scattering variables

-M-I(IaL> 4 'bL>) e riI(IaR> ' le>) ’

W(]aL> + lbL>) - _Z_MI(|3L> - |bL>) + h_lv(|a,R> - |bR>)
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Introduce the normalized impedance matrix

z =M IM., . - (103)

Using the same approximations as in (99) one obtains
|b>=lz|a>+fu-1z)]b> (104
il Ty B S £ S )

Now add both series and parallel perturbations as in Fig. 22. The

small reflections are simply added as follows
[b>= Yayla>+ U-Lz-1yby> (105)
L A L e T | - SR

Invoking reciprocity and symmetry of the junction

1 1 1 1
|b; > 72-3Y U-3z-3y |lap
= (106)
1 1 1
la>| |U-Zz-3¥ 7z2-7y | |Ivp
Comparing (106) with (91), one concludes
H+E=32-p
HGE=- 32ty
Solving for z and y:
z=jH (107)
Y =-j& (108)
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Fig. 22. MIL with both series and parallel perturbations.
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Fig. 23. Equivalent circuit of the aperture junction with sources.
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From (89) and (90) it can be seen that all the elements of H and of
E are real and proportional to frequency w. Thus, the elements of

2 are represented by self and mutual normalized inductances

z = juk (109)

where:
"ij = uamhxi(xo,o)hxj (XO,O) . (110)

These inductances may be positive or negative, depending on the signs
of hxi and th..
Analogously, the normalized admittance matrix consists of self-
and coupling capa ’tances:
 dtee 9 (111)
where the elements of c are
33 " eaeeyi(xo,O)eyj(xo,O) : (112)
The negative sign signifies that the capacitance is negative if the pro-
duct eyieyj comes out to be positive. A note of explanation is necessary
on the meaning of the ¢oupling capacitance cij(when i# j). Such a cir-
cuit element does not exist in lumped-circuit theory. It signifies that
the current at the port i is proportional to the rate of change of vol-
tage at the port j, the constant of proportionality being defined as a
coupling capacitance.
Finally, to obtain the actual impedance matrix Z, (103) has to be
denormalized as follows

B
1

A \
= - & ! .




T

Similarly, the denormalized admittance matrix is

3o +
Y’M{ZM{"JNﬂIE?ﬁ - (114)

Note that all the matrices on the right-hand sides of (113) and (114) are
real, thus the equivalent circuit is easy to interpret.
When also the voltage- and current sources from (52) and (55) are

included in the circuit, the complete first-order equivalent circuit takes

the form shown in Fig. 23.

This representation is valid below the first resonant frequency
of the aperture. For a circular aperture of radius a the lowest resonance

appears at [20]
ka=1.841

Thus, the representation is valid for frequencies

87.9-10°

a

fliee

For an aperture of radius a = 10 am, the equivalent circuit is valid for
f<< 880 MHz. The validity of the equivalent circuit could be further ex-
tended in the region close to the aperture resonance by the methods
described in[21), which will not be pursued here.

The circuit diagram of matrix Z for a 3-conductor system is shown in

Fig. 24a. The self inductances are denoted by Lll’ LZZ’ and LZS’ and

[20] R. E. Collin, Foundations for Microwave Engineering, New York:
McGraw-Hill, 1966, p. 111.

[21] G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters,
Impedance-Matching Networks, and Coupling Structures, New York:
McGraw-Hill, 1964, p. 242,
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Fig. 24(b). Admittance perturbation circuit.
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the mutual inductances are denoted by le, L13’ and LZS' The voltage

V1 is then given by

Vi * Jully Vs * LW > ka¥s)
Analogous expressions are valid for v, and Vs. This circuit is familiar
from the conventional. circuit theory and it does not require further
comments. However, the circuit representation of the matrix Y is some-
what unconventional. The self capacitances are denoted by Ci10 Cp2 >
and CZS’ while the coupling capacitances are denoted by C12’ CZ3’ and

C13. The current I1 is given by

I; = -3w(CqVy * CypVp + Cy5V3)

and similar expressions may ‘< written for I2 and 13. The negative

sign signifies that all these capacitances are negative, as compared
with the conventional capacitances. From the point of view of energy
balance, the negative capacitance is an active element, capable of
supplying the energy to the rest of the network. This may be considered
as an inconsistency of the equivalent circuit of the aperture, but it

will be shown that these negative capacitances are extremely small.

 Furthermore, the negative capacitance can be thought of as the element
which represents missing capacitances on a uniform transmission line which
is perturbed by the aperture.
The values of the elements in the equivalent circuit from Fig. 24
will be next computed for a 2-conductor parallel-plate MIL described
in Section IV. For a circular aperture of diameter d = 2 cm the electric

modal functions are computed from (68)
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-6.1358
P P R = 613.58
1o’ 1.1072

2.3690

eyz(XO,O) = -1:0—_2- = -236.90

e A S e 8 Oy T s—

The values of the magnetic modal functiohs at the position of the

aperture are found from (69)
}&I(XO’O) = -0.81491 th(xO’o) = 0.42212

From (110) and (10) the normalized inductances are obtained as

12 13

3
» b ;

.= 127 - 00

11 = -5.7636 « 10

» %y = 2.9855 « 10

For the frequency 1 GHz, the normalized reactances are

-3 -3
wln = 6.9913 - lQ 3 wﬁLZZ = 1.8758 « 10 © , wk

- . 1073
12 = 3.6214 - 10

Similarly the normalized susceptances in parallel with the MIL are

found from (112) and (10)

= . -2 = - . e
weyq = 1.3963 + 10 » WCqo 5.3909 - 10

3 3

» WCy, = 2.0814 + 10°
Therefore, even at the highest frequency of interest for EMP calculations,
the normalized reactances and susceptances are small numbers. Thus it
is expected that they do not cause appreciable reflections when a wave

is propagating along the MTL.




T —— T

T —

Consider that an incident wave laL> is coming from the left

toward the equivalent circuit of the aperture in Fig. 22. Assuming
that the right-hand side of the equivalent circuit is terminated in
an infinitely long MTL, it is of interest to find 'bL> in terms of

la;>. Since for an infinitely long MIL  the vector IbR> vanishes,

the equation (106) gives

b > = %(z-y) |ap>

Therefore, the reflections due to the presence of the equivalent cir-

cuit on a uniform MIL are determined by reflection matrix I'

)
5 i 1 SO P 1

Whyy * WCjy Ry, *wCy,

.| w
E = ;i(_-z) =12.

For the case under consideration, the reflection matrix is

1.0478 + 1072 -9,0123 - 10°°

3 3

-9.0123 « 10 3.9572 « 10°

It can be seen that the reflected amplitude of the first mode is only
1.05% of the incident amplitude for the same mode. The other reflections
are even smaller than 1%. At lower frequencies all coefficients of the
reflection matrix are proportionally reduced. This fact justifies

the procedure from Section IV of computing the voltage waveforms by

entirely neglecting the presence of inductances and capacitances in

the equivalent circuit.
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It is of interest to investigate the equivalent circuit of the
& aperture on a single-conductor transmission line. The geometry of the
problem is such as specified by Fig. 3: a round wire of radius r is
placed in parallel with the ground plane, so that the center of the
wire is elevated above the ground plane for distance d. The circular
aperture of radius a is located at x = Xpr ¥ = g, 2=10.
When N = 1, it follows from formulas in the Appendix C that

matrices M; and My reduce to simple scalars:

where C' and L' are the distributed capacitance and inductance of the
single-wire transmission line. When the subscripts i and j are omitted,

the normalized inductance from (110) beccimes ]
L = o 2(x 0)
m}& 0’
and the normalized negative capacitance from (112) becomes 3
c = €a ez (x,,0)
ey

The normalized modal functions hx and ey for the TEM mode of a single

wire above the ground plane have been derived in [13] as follows

[13] D. Kajfez, "Excitation of a Terminated TEM Transmission Line Through
a Small Aperture,' Interaction Note 215, July 1974.

kb Lante i e ot
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R wZ, (xo2 + b9

where h denotes the reduced height of the wire:
h= 'dz - r2

In order to obtain the actual values of the equivalent inductance and

capacitance, the values are to be denormalized according to (113) and
(114):

joL = ju %z

. RRR:
-juC = -juM; Ty

The values of L and C are, therefore

= uae 7

2
b (x0




2, = 60 cosh

0
The similar formulas have been derived by Lee and Yang [22]. Their

formulas (20.a) reduce to (115) and (116) in the case of a thin wire
(r << d, h ~d). For thick wires it is believed that (115) and (116)

are more accurate, because the exact TEM modal functions have been

used in the derivation.

[22] K. S. H. Lee, F. C. Yang, "A Wire Passing by a Circular Aperture
in an Infinite Ground Plane,' Dikewood Corporation, February 1977.
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SECTION VI

INTERACTION BETWEEN AN APERTURE AND A SINGLE WIRE

In this section we examine the validity of the assumption that the
dipole moments in the aperture can be determined from the plane wave exciting
the aperture ignoring the presence of the MTL. This assumption has been
used to derive the model for aperture coupling to the lines in the preceding
sections. For simplicity, we treat only a single wire line over a ground
plane. It is possible, in principle, to extend the analysis to treat a MIL
backscattering into the aperture by superimposing the backscatter from the
individual lines, accounting for the mutual interaction of the various con-
ductors. The general situation is too difficult to treat here, however. As
an additional simplification, we assume the conducting line is bare.

Referring to Figs. 2 and 3, in addition to the plane wave fields feXt
and A°Xt exc1t1ng the d4perture, we must now consider aperture fields
Eln and H t which are the fields reradiated from the transmission line.
These flelds are linearly related to the dipole moments in the aperture and
we show in the following that they can be written as

int

Hxs = tmcmx (117)
521 A

Eys = tecey (118)

where tm(te) is the x(y) component of the short circuit magnetic (electric)
field at the aperture reradiated from the line due to the appropriately
directed unit magnetic (electric) current moment in the aperture. In the
absence of any other sources in the interior region, Eqs. (8) and (9)
become with (117) and (118),

o, HEXE

m Xs
i ” oy, e
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= ext
Jwea E

TR B

c
o 1+jweaete

It is easily seen that the coupling from the line to the apert
be neglected if it can be shown that

<<
Wy amtm .,

<< )
we uete 1

In the following we determine t, and t , the apérture fields s
the wires due to unit electric and magnetic dipoles in the ape
Beginning with the dipole sources Ee and Em (see, e. g.,
and a single wire in the internal region, the ground plane is
that the dipole and wires are imaged as in Fig. 25. Note that
doubles the current moments of the dipole sources. Transverse
nates 3 = (p,9) and Bi = (pi,¢i) measured from the wire axis a
wire axis, respectively, are also introduced in Fig. 25. The
establishes the location of the aperturewith respect to the w
The fields due to the dipoles in the absence of the condu
determined from free space magnetic and electric vector potent

MR T AR
45 e-JkIr-xoaxl
A, = —X
e p— —
Y 2r(T - pol
T -
5 e-Jklr-xoaxl
S
= 2 I?-BOI

respectively, where

T=2xa +ya +za
IR
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Fig. 25. Geometry of wire over a ground screen with equivalent dipole mome
representing an aperture. :
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The currents on the wire and its image are 2ssumed to be entirely z-di
but in opposite directions. Hence they determine a magnetic vector po
Az which can in turn be used to determine all field quantities. Bound
conditions require the z-component of electric field to vanish at the

of the upper wire in Fig. 25; however, it must vanish everywhere inter
the wire as well and if we restrict our observation to the wire axis,

only the total or average current I(z) from the upper wire contributes
the vector potential there. This choice of the observation point thus
out of the problem any circumferential variation in the current on the
wire; the circumferentially varying currents on the image wire do, how
contribute to the vector potential at ?=0. But if the wire is thin a
sufficiently far from the ground plane in terms of the wire radius, i.

ke << 1,
r << d,

then the image wire may essentially be replaced by a line source along
image wire axis which carries a current I(z) directed opposite to that
upper wire. In other words, under conditions (125) and (126), if the
wire is replaced by multipole line sources located at -5.1 =0, the c ntr
of the dipole, quadrupole and higher order multipole terms can be neg
compared to that of the monopole current filament I(z). Thus the magr
vector potential along the upper wire axis due to the wire and image ¢
is approximately

[ kA (z-21)? e-jk./4d7+(:
A ol - I(z') |& -

2 3=3 v r2+(z-z'): v’4dz+(z-:

-0

Along the axis of the upper wire Ez must vanish, that is
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> ¥ 2 > - i § - =
. [ﬁﬁ'e‘ aEsrv) BAL B A, - Evx(axpmx)]+ =0 (128)
=10
or writing out the desired components,
2
2 d°A oF
a2t A, . e s e |
Juwy 92 p=6 Juwu Yy p=6 y p=6

(129)

Eq. (129) with (123), (124), and (127), isan integro-differential equation for
the current I(z) induced on the transmission line by current moments cey and

Corx in the aperture. In order to determine the current we introduce the

Fourier transform pair

1 ~ -Jk,z
¥(z) = ;%: W(kz)e dk, (130)
4y
© 1 +jkzz
vik) = E Y(z) e dz (131)
1

where the wavy line indicates Fourier transformed quantities. Writing the
current in (127) as an inverse transform and making use of the identity

'Jk‘/ +(2-2') ~ -jk_(z-2")
=7137 f HSZ) (kpde ~ dk, (132)

./oz+(z-z')2
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where kp = /‘(Z-kzz - Reke>0, Im kp<0, (127) becomes

© oo

— 0 ED ar) - HD @d)] 6"
A, 33 W f f j I(k,) [Hy (kpr) Hy (kad)] .
ey (133)

kz-k;)z'

-J‘k;z 4
X e dkzdkédz :

-3 (k, k)2 :
e dz' = Zﬂﬁ(kz-k;)

~00

(133) simplifies to the transform representation

oo

jk_z
Z

e f Te,) 15D (k ) - HSD (2kpd)]e-J Za&,  (39)
g v

-C0

Similarly, we express the right hand side of (129) in transform representa-
tion:

ey | >

'Jklr‘col

2
a%A, _ [u Cay ® ]
5z§y -5=5 923y 3='6

2m |?-30|

{1 = 2 -jk z
i, . W N (2 x 13-3 :
4jm  9z9y f H0 (kplp pOl)e dkz 0=0

gl . : -jk z
g Kk B (k A+a? ye © % dk
an/ 2,77 KR 5
x0+d
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o

-jk_z
Sy S50 bj‘ kpﬂgz){kpf§g+-d2]e 2k,
4ﬂ¢§z+d2

0 -00

Substituting (135), (136) and (137) into (127) and taking the Fourier
inverse of the resulting equation yields finally the transform of the current,

T szeY]

(2 v e ]
Ty = L2 d 5 )(kp¢§0 e ] [kcmx
z

11k2) (2)
kaggjgf Hg (k 1) -Hg ™ (2K )

~

= L) + I(k) (138)

where in(kz) and ie(kz) are identified as the partial currents arising from
the corresponding source terms C. and Cey’ respectively. Note that I is
an even function whereas I, is an odd function of the variable k,.
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The total line current can be obtained by taking the Fourier inverse
of (138). Our interest, however, is in obtaining the fields that the wire
L and image currents scatter into the aperture and these can be found most
easily from the vector potential expressed in terms of the current transform.
The vector potential at an arbitrary point is obtained by again treating !
both the line and its image as current filaments at 0=0 and '5.1’;5, respectively:

S -jkl'p'+zz(z-z'){ -jklsi+'52(z-z')l f
'Az=%fI(z')[e+* : -e-»-* ]dz'
lo+a, (z-2") | [o5+a, (z-2") | *
-jk. z
ol T HD & 15D - Bk [3.D1e ~ ? dk
4j-/’2?f 2 Mg (e lel) - Hg™ Gk o | 2 =

where again (132) and (134) have been used. The desired field quantities

in the aperture are

2
10 S | i
ys jwue dyodz X=X
y=2=0

% jd % (2)
f I(kz)kzkal [kp/x07+dz'dkz

Zﬁfweég + d!

-0

i (2)
Io(ky )k K Hy ™ [k vig +d”dk,

iR J"
WuehC+dl

- 2
PRS-
g d HG®) (k.6 - HG®) (2K50)

XO*

(140)

¢
e ey
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L f 1(k,)k H(Z)[ JArd”| d,

2jV2n /xg+d2

: ,——d@ 2 f I (k,)k H(z)[k 2,4 dx
0" %0 z
Zjvem yxp+d™ T

f [, 7] o,

HS®) (k,r) - HS (2k )

where we have used the even and odd properties of im and Te to appropriately
simplify the integrals (140) and (141).

Returning to the examination of conditions (121) and (122), we first
note that the four parameters k, Xy d, and r in the integrals can be
reduced to three parameters if all distances are measured in terms of wave-
lengths. Thus, we examine

(SF), (ke) 3k’ m (&, kd, kr)

o 1
() + (ka)?
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(SP) (k) (k) £ £, (e, K, k)

wea t = (143)
where we have introduced the aperture shape factors defined as
%m
(SF)m - ;3 (144)
%
(SP), = = (145)
L

where a and a, are the aperture polarizabilitiés and ¢ is the largest aper-
ture dimension. The shape factors have been determined for a variety of
aperture shapes by numerical and experimental means [11-12] and are typically
somewhat smaller than unity. The normalized functions Em and Ee are
defined as

y n(xg+d?)
tm(]QCO, kd, kr) = W tm

2
da

H{) [./(1-a2) [ Goxg) “+ (kd) ]

% ng)[/f-?_ kr] 4 HSZ)[ 1-o? kd)

(146)

[11] S.B. Cohn, '"Determination of Aperture Parameters by Electrolytic-
Tank Measurements', Proc. I.R.E., Vol. 39, pp. 1416-1421, November
1951.

[12] S.B. Cohn,"The Electric Polarizability of Apertures of Arbitrary
Shape," Proc. I.R.E., Vol. 40, pp. 1069-1071, September 1952.
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Z, X +dz
t (kx,, kd, kr) = t
e 0 kzdzn e

J‘ H(Z) /(Ta)mocw(kd)l] da
ik

”(Trﬁ_fkr] : ng)[ 1o kd]
(147)

Since our assumption that the aperture may be replaced by current moments
c and cm requires that the aperture be small, say less than a tenth of a

wavelength then (kR,) .25 and since
(SP)g u < 1 (148)
. ke’ 5 %1 (149)
(o) + (kd)
we need only demonstrate that
'Eml << 1, (150)
é Ifel << 1, (151)

to show that the wire does not sufficiently excite the aperture that its

4 effect needs to be accounted for in computing the aperture dipole moments.

: The integrals (146) and (147) are numerically evaluated by (1) noting
the symmetry of the integrals about a = 0; (2) integrating numerically using
Gauss-Legendre integration on the interval 0 < a £ 2, with a singularity

: of the form 1/(a-1) removed; (3) adding a contribution from the branch point
at o = 1; and (4) integrating numerically on the interval 2 < a < « using
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Gauss-Laguerre integrationwhich assumes an exponentially decaying integrand.
The appropriate rate of exponential decay in the integrand can be determined
from the large argument approximations to the Hankel functions appearing in
(146) and(147).

From the numerical calculations, Figs. 26-33 show that over a wide range
of parameters kxo, kd, and kr, Eqs. (150) and (151) are indeed satisfied. How-
ever, when the wire is d%rectly above and close to the aperture (kx0 = 0 and
kd small), (150) and (151) are not satisfied. If the wire is close to the
aperture, however, the aperture must be small in order for the dipole moment
representation to remain valid. Calculations by Lee and Yang [22] indicate
that the dipole moment representation of a circular aperture (without considering
backscattering from the wire) is accurate to about 10% only if 2kf < kd and it
seems reasonable that this upper bound on the maximum aperture dimension would
hold for other aperture shapes as well. Using this as an upper bound on k&
and noting that Em and Ee are largest when kx0 # 0, it is sufficient to show
that

(kd) 3.
7) Itm(O,kd,kr)| << 1 (152)

\

rkd’s B
b % (0,ka,kn)| << 1 (153)

\

in order to exclude consideration of wire-to-aperture coupling. These quanti-
ties are plotted in Figs. 34-35. The figures show that the effect of the wire
on the aperture dipole moment is negligible whenever the representation of the

aperture by dipole moments is valid.

This completes the task set for this section, but it is interesting and
instructive to return to the current transform (138) and use it to find the

current on the line by inverse transforming:

[22] K. S. H. Lee, F. C. Yang, "A Wire Passing by a Circular Aperture in an
Infinite Ground Plane,'" Dikewood Corporation, February, 1977.
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Fig. 26. Magnitude of t for a wire of radius kr = 0.1.




104§

e
1

103

KR= 0.1000

99—+ KD=
O—& KD=
A—A KD=
+—+ KD=
X—xX KD=
&—& KD-=
+—4 KD=
X—X KD=
Z2—Z KD=

Q
8}
Q
8}
Q
Q
8}
)
)

.2000
-3C00
-4000
.5000
.6000
.7000
-8000
.9000
-0000

0.20 C.40 0.60 c.80
KX

Fig. 27. Magnitude of te for a wire of radius kr = 0.1.

78

.00




KD=
KD=
KD=
KD=
KD=
KD=
KD=
KD=
KD=
KD=
KD=

KR= 0.0100

[ — 1
O—3)
H
et
X
&—
—
=
e
Y
St

0.0200
C.1000
0.2000
0.3C00
0.4000
0.5000
0.8000
0.7000
C.8000
0.3000
1.0000

-t—E I
1074l
104
'd.s L] s | Ld IR, N
C.00 Q.20 0.40 0.60 0.80
KX

Fig. 28. Magnitude of t for a wire of radius kr = 0.01.

79




[tel

KR= 0.0100

KD=
KD=
KD=
KO=
KD=
KD=
KD=
KD=
KO=
KD=

1o

4

o

AR AR

KO=

e} —

c

.00 0.20 0.40 0.60 G.80
KX

Fig. 29. Magnitude of te for a wire of radius kr

80




KR= 0.0010

e 0
09 8]
B—d 0]
i 0
x*—X 0
&—& KD= O
. A 4 0
xR 0
F o 4 C
Y C
x—X i

1

.00

0.20

0.40
K

0.60 0.80

Fig. 30. Magnitude of t for a wire of radius '




h
KR= 0.0010
89— KO= 0.0020
: ®—& KC= 0.1000
: ¥ & A—A D= 0.2000
b +——+ KO= 0.3000
: X—X KO= 0.4000
&—& KO= 0.50C00
10 X—X KC= 0.7000
Z—Z KO0= 0.8000
Yoy 0.9000
x—x {

10
'o-lgt I ‘j ¥R 3 1 b
0.00 0.20 0.40 0.60 0.80 1.00

KX

Fig. 31. Magnitude of t, for a wire of radius kr = 0.001.

82




KR= 0.0001

O9— KO= 0.0002
O—® KD= 0.1000
A—A KD= 0.2000
+——+ KD= 0.3000
¥—xX KDO= 0.4000
&—¢& KD= 0.5000
4¢+—<4 KD= 0.6000
X—X KD= 0.7000
Z—Z KD= 0.8000
Y—Y KD= 0.9000
—X KD= 1.0000

.00 .20 .40

Fig. 32. Magnitude of t, for a wire of radius kr = 0.0001.

83




)
'
12
10
KR= 0.0001
O—& KG0= 0.0002
. ©o—& KO= 0.1000
10" A—A KD= 0.2000
+—+ KO0= 0.3C000
X—X KD= 0.4000
O—® KO0= 0.5G0aa0
4 4—<4 KO0= 0.8000
10"~ X—X KD= 0.7CC0
Z—Z KD= 0.8000
Y—Y KDO= 0.9000
—x KO= 1.0000C

Itel

10’3 . ' - -
0-00 0.20 0.40 A 0.80

.00

L

Fig. 33. Magnitude of ty for a wire of radius kr = 0.0001.




OO0~
O0~0
O—~00
—O000

o000

wnnt
ool
X

KD

Fig. 3. Magnitude of (kd/2)° t (0, kd, kr).
85




s e e G ™

1.00
2

0.80

O9—a
oO—9
A—a
o
0.60

-40
KD
86

0

-20

o

Fig. 35. Magnitude of (kd/2)° £ (0, kd, kr).

e

_E.Eéw




1 = -jk,2
I(2) = 7-2_-; I(kz)e dkz

- (2)
L 1D i o o e, )
whpdt J R EPeD g @) 1" T
-jk,z
X e dk (154)

Z

The contour of integration in (154) is shown in Fig.36 which assumes that

the medium is very slightly lossy so that k is complex. Branch cuts in the

k_ plane are chosen along the loci anp=() and k, is assumed to be in the
sheet Innkp<10 so that the radiation condition is satisfied for each component
cylindrical wave in the integral representation (154). If z is positive, the
contour then may be deformed around the branch cut as shown in Fig.37 (where

k has also been allowed to become real) and the integral becomes

1(z) = L(2) + 1,(2) (155)
where
c_de k2
I.(2) = — ey 2d
(x +d )log ==
k
(2)
+ zcexd % l/%i??é2)(xg+d2) ge7B23a
(2) NP Y
(Zgd W (Voea ) (xg*d )) R

H(Z) ot 1) - r{éz)lz/ﬁzmz d) [ A

™ xo+d
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Fig. 36. Branch cuts and contour of integration in the k, plane.
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Rek,

Fig. 37. Deformation of the contour around the branch cut.
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= -Ie(-z), >0

-jkz
-c_de’)
(z) = e

YA
7
» n(x0+d2)log d

ks KD /0-60) o)

2cmxkd o e'JBZdB

- m/ACrd? ; HD [AZ-67 1) - wD (2467 o)) AZ-67

2l 1 [fodd g
-j —=%— | Im »

mn/x2+d2

0 0

e %%4q

HSZ)[J£2+QZ r].- ng)[2/£2+u2§]J ¢{2+c?

= Im(-z), z:>0
(1s7)

The first two terms on the RHS of (156) and (157) represent the TEM modes
excited by the electric and magnetic dipoles, respectively, and arise from

the branch point contribution from the deformed path in Fig. 37. The remaining
two integrals in each expression represent the current due to the propagating
and theevanéscentspectrum, in that order. Noting that the integrands for the
evanescent fields are bounded by some number C, say, we can bound those inte-
grals by the integral

00

24 = = =C/2), (158)

0

The integrands for the propagating fields are of bounded variation and hence,
by the Riemann-Lesbegue lemma [23] are C’(l/z) as well. Hence, for large z,

[23] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, New York:
Cambridge Press, 1973, p. 172.
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a

which shows that at large distances from the aperture, only the TEM wave
is significant.




APPENDIX A

LUMPED ELEMENT TRAVELING WAVE SOURCE

In many network computations it is convenient to use scat-
tering parameters, defined in (ref. Al), (ref. A2)

1
a, = £ L T.) (A1)
k™ om k' Zoxlk

"Rox
i R T (A2)

In the above, Vk and Ik are the actual (not normalized) voltage
and current at port k of an N-port, while ZOk = ROk + ijk is the
normalization impedance at port k. The asterisk denotes a com-
plex-conjugate number. When scattering representation of net-
works is used, it is convenient to replace the voltage and cur-
rent sources with corresponding traveling-wave sources. It seems
that no convenient circuit elements have been found for that pur-
pose. Penfield and Rafuse (ref.A3) have used a symbol reminis-
cent of a voltage source in combination with a directional coupler,
such as in Figure Al. However, this symbol represents a pure
traveling-wave source only in the limiting case when the coupling
tends to zero and the voltage source tends to infinity. For any
finite value of the coupling, a fraction of the energy from the
main guide will be unavoidably absorbed in the matched termination.

Al. D. C. Youla, "On Scattering Matrices Normalized to Complex
Port Numbers," Proc. I.R.E. Vol. 49, p. 1221, July 1961.

A2. M. T. Carlin, A. B. Giordano, Network Theory, an Introduction
to Reciprocal and Nonreciprocal Circuits, Englewood Cliffs:
Prentice Hall, 1964, pp. 326 and 144.

A3. P. Penfield, Jr., R. P. Rafuse, Varactor Applications,
Cambridge: M.I.T. Press, 1962, p. 26.
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A convenient source of the traveling-wave to be proposed
here is a combination of the voltage source and the current
source such as shown in Figure A2(a). To verify this, write the
Kirchhoff laws for this circuit:

1. + 1. ¢ 1. %0 (A3)
-V, +V_ =D (A4)

Take the normalization impedance for the port 1 to be ZO1 and
for the port 2 to be Z Then using (1) and (2) obtain the

02°
following:
] s F T e i ( ] b
b E Zog %ol 1R | Zor'Telf ] a— ZoalsVs
1 Zo2%*%01 YRoz  Zo2*%p1| | ! 02 Z,;+7Zy;
= . ES (AS)
* o *

Ro1  Zo1*Zol Zo1-Z02 Zoz21s*Vs
b, RS, o S Sy 2yt |"Rgy 77
G2) WGy o eqtips cdgstRge ) Eep ] 01 * %02 |

A convenient choice of the normalization impedance, is as
follows:

Zo1 = 293 = Ip = Ry * X (A6)

When such a choice is made the diagonal terms in (AS) become zero
and the two port in Figure A2(a) becomes an allpass:

1 0" s
2/1‘1‘0'

(A7)

Furthermore, the source of the outgoing wave at port 1 can be
made equal to zero by choosing

VS
IS i 'ZH (AS)
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Fig. Al. Conventional symbol for traveling-wave source.
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Fig. A2(a). Combination of voltage and Fig. A2(b). Proposed symbol for
current sources. traveling-wave source




